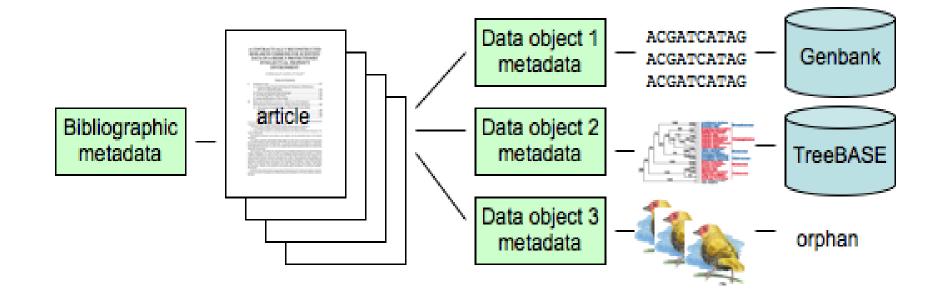
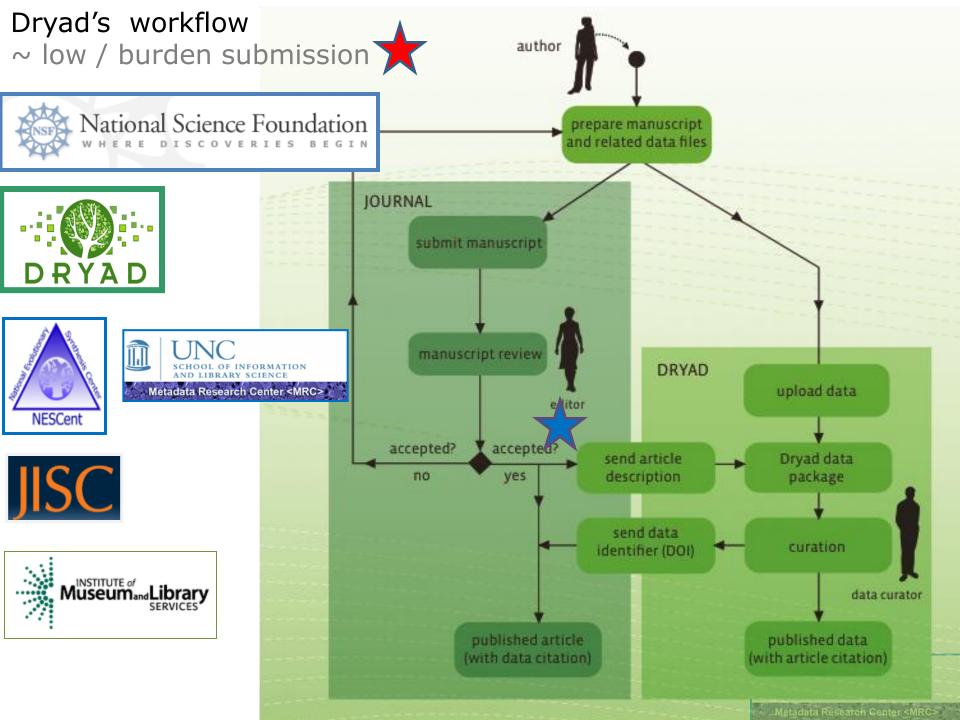
Metadata for Scientific Data: An **Analysis Targeting Challenges and Opportunity in Our Global Information Ecology CODATA** Conference October 2010, Cape Town, South Africa

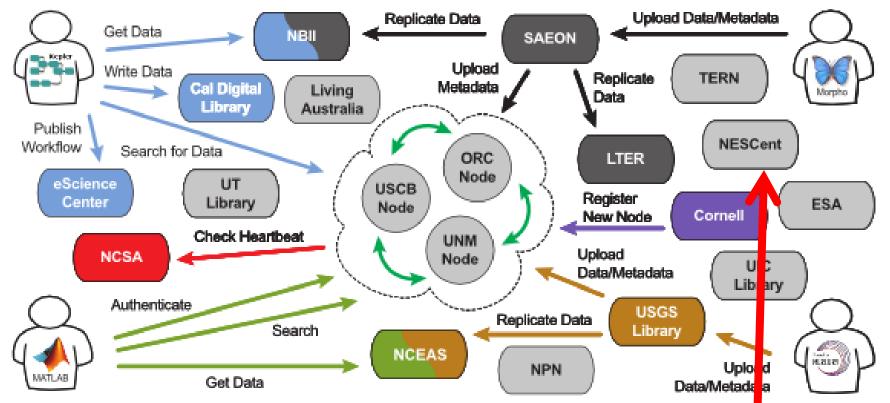
Jane Greenberg, Professor Craig Willis, Graduate Research Assist. Hollie White, Doctoral Research Fellow Metadata Research Center University of North Carolina at Chapel Hill

Overview


- Dryad: Metadata application profile
 - Linked data/Semantic Web
- Research on metadata schemes
 - Observations and motivation
 - Objectives and methodology
- Conclusions
- Q&A

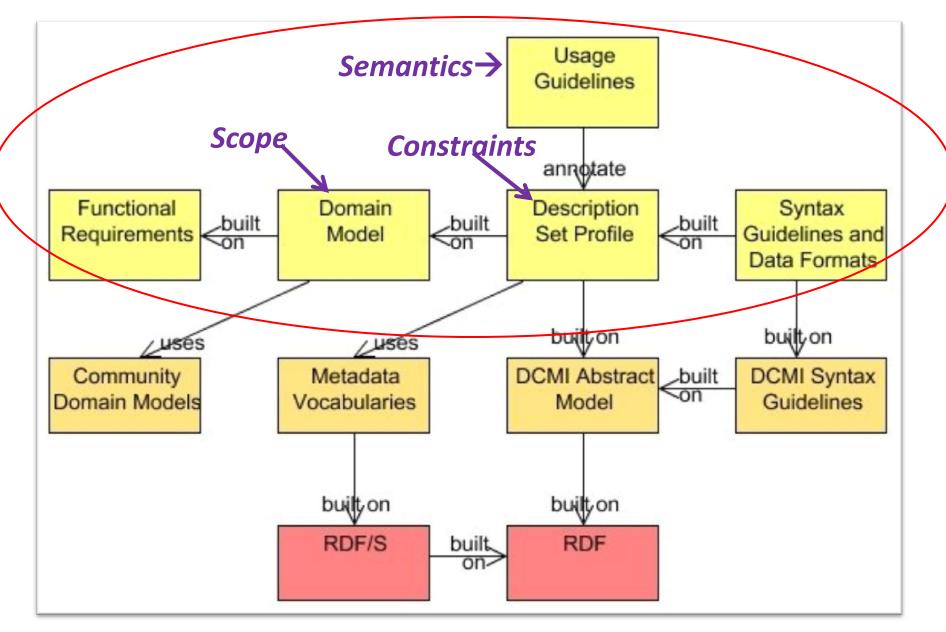


Dryad: Digital data underlying published research



Dryad metadata application profile

Dublin Core based


- Circumvents limitations of using a single scheme
- Interoperable with other schemes
- Why reinvent the wheel?

Modular scheme:

- 1. Data package
- 2. Journal citation
- 3. Data files

bibo (The Bibliographic Ontology) dcterms (Dublin Core terms) dryad (Dryad) DwC (Darwin Core)

Simple: automation of metadata gen; discovery of heterogeneous datasets Interoperable: harvesting, crosssystem searching Semantic Web Compatible: sustainable and adaptable metadata architecture, supporting machine processing

Baker, T. (2007) slides , annotated (Greenberg, 2010)

DRYAD

Dryad Home > Main > Data Packages > View Item

Submit Data Now!

My Account

Login

Register

Browse

Authors Publication Date

Journal Title

Information

Depositing Data Using Data Dryad Partners Archiving Policy About Dryad Dryad Blog

Data from: Patterns of morphological and plastid DNA variation in the Corallorhiza striata species complex (Orchidaceae)

When using this data, please cite the original article:

Barrett CF, Freudenstein JV (2009) Patterns of morphological and plastid DNA variation in the Corallorhiza striata species complex (Orchidaceae). Systematic Botany 34(3): 496-504. doi:10.1600/036364409789271245

Additionally, please cite the Dryad data package:

Barrett CF, Freudenstein JV (2009) Data from: Patterns of morphological and plastid DNA variation in the Corallorhiza striata species complex (Orchidaceae). Dryad Digital Repository. doi:10.5061/dryad.1013

doi:10.5061/drvad.1013 Package

Identifier

Dryad

Dryad

Abstract

http://hdl.handle.net/10255/drvad.1014 Data Files http://hdl.handle.net/10255/dryad.1015

Corallorhiza striata is a wide-ranging, morphologically variable, mycoheterotrophic species complex distributed across North America. Objectives of this study were to assess relationships and test validity of previously delimited varieties of C. striata, including the recently described C.

bentleyi. Two plastid DNA regions were sequenced for individ North America, identifying four major clades. The large-flowe U.S.A., southern Canada) was sister to the smaller-flowered Mexico), and these were sister to a Californian clade with restricts use involute (Maviae) and the andersecol C, heatlevi

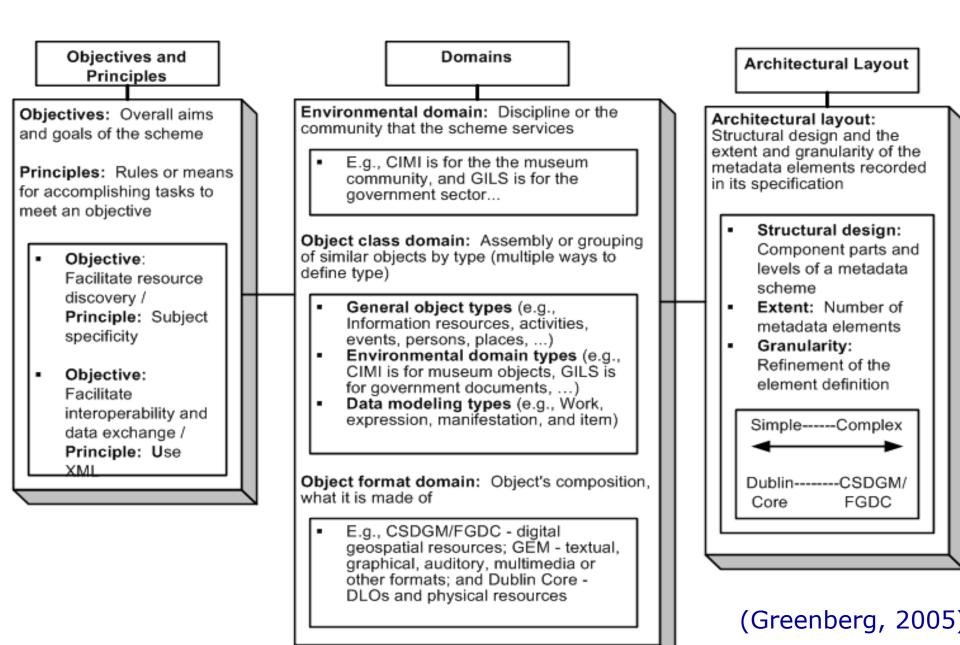
Search Data

Observations and research motivation

- Metadata overload, (deluge?)
 - Toothbrush *scenario*
- Approached via discipline/domain, rather than function
 - EML, DDI
 - Barriers for interoperability
- Initiatives stray from core components
 - Granular metadata = rich detail
 - Can impede disciplinary and cross-domain interoperability, data discovery, access, and reuse.

Research objectives + method

- 1. What is the scope of scientific metadata schemes?
- 2. Can we discern some similarities and differences?


Method

- Content analysis of 9 schemes, metaanalysis of literature
- Examination of 10 ontologies

The MODAL Framework

for Metadata Objectives and Principles, Domains, and Architectural Layout

Scheme selection criteria

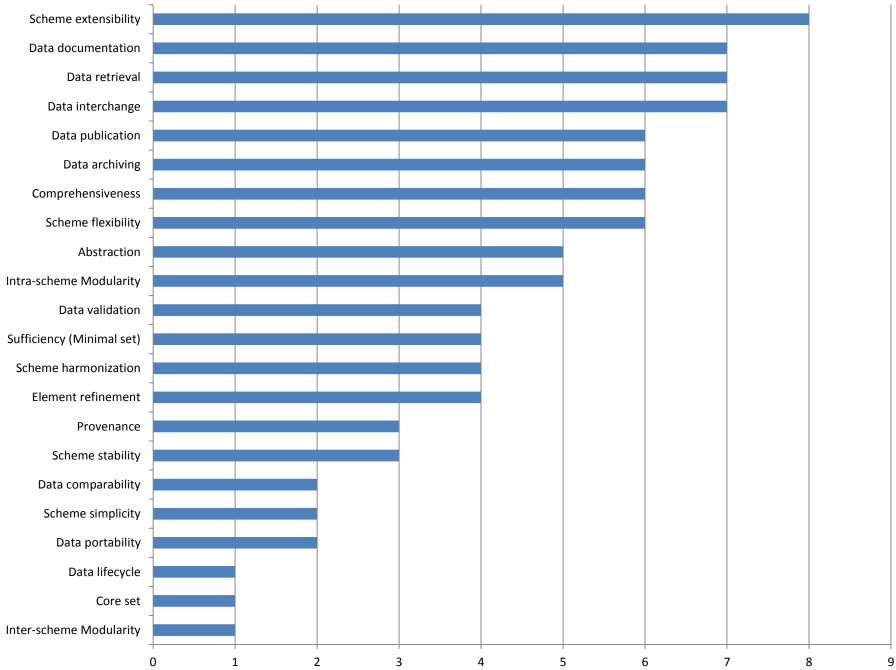
 9 schemes having an established relationship with publishers in one or more domain.

Additional data gathering

Review scheme documentation (codebooks, data structures), policy statements, literature, and examine use in selected databases

Scheme	Vers.	Initial Rel.	Maint. Body	Repository	* Pub.
1. DDI	3.1	2000	DDI Alliance	ICPSR (and others)	128 ²
2. CIF	2.4.1	1991	IUCr	Cambridge Structural Database (CSD)	130
3. DwC	App.P	2001	TDWG	GBIF	1
4. EML	2.1.0	1997	KNB	Ecological Archives	4
5. mmClF	2.0.09	2005	wwPDB	Protein Data Bank (PDB)	NA
6. MINIML	1.16	2007?	NCBI	Gene Expression Omnibus (GEO)	53
7. MAGE	1.0	2002	FGED	ArrayExpress	53
8. NEXML	1.0	2009	NESCent	TreeBase	36
9. ThermoML	3	2002	IUPAC	ThermoML Archives	5

Functional aspects/properties (22, still refining)


- 1. Core set
- 2. Data lifecycle
- 3. Data portability
- 4. Scheme simplicity
- 5. Data comparability
- 6. Scheme stability
- 7. Provenance
- 8. Element refinement
- 9. Scheme harmonization

10.Data validation

11.Intra-scheme Modularity 12.Abstraction 13.Scheme flexibility 14.Comprehensiveness 15.Data archiving 16.Data publication 17.Data retrieval 18.Data documentation 19.Data interchange 20.Scheme extensibility

Functional aspects/properties

Criterion	Description
Core set	The scheme is intended to provide a common set of elements used to describe the most common situations.
Data lifecycle	The scheme is intended to support documentation of the data lifecycle.
Data portability	Data created using the scheme is intended to be "portable" software application and operating system independent. (This is generally an objective of schemes developed earlier.)

Scheme: MODAL domains

Scheme	Environmental Domain	Object Class Domain	Object Format
			Domain
CIF	Crystallography	Experimental studies	Digital data (Crystallographic
			structures)
Darwin	Biology	Observations	Digital data (Observations)
Core		Specimen collections	Physical specimen
DDI	Social sciences	Experimental studies	
		Observational	Digital data (Social science
		studies	statistical data)
EML	Ecology	Experimental studies	Digital data (Observations)
		Observational	
		studies	
MAGE	Molecular	Experimental studies	Digital data (Micro-array
	biology		based gene expressions)
MINIML	Molecular	Experimental studies	Digital data (Micro-array
	biology		based gene expressions)
mmClF	Structural	Experimental studies	Digital data (Macromolecular
	biology		structures)
NEXML	Phylogeny	Experimental studies	Digital data (Phylogenic trees)
ThermoML	Thermodynamics	Experimental studies	Digital data (Thermodynamic

6

Scheme Encodi		Encodings	Structural Design	Extent	# of	# of
					files	levels
CIF STAR DDI XSD		STAR DDL	Data blocks	18	1 DDL	5
		XSD	Categories	62		
			Data items	486		
DDI		XSD	Elements	797	22 XSD	6+
			Complex types	296		
			Simple types	599		
EML XSD		XSD	Resource	4	25 XSD	5+
			modules	6		
			Supplemental	579		
	Challenges		modules	174		
	w/ the		Elements	54		
	analys	Sis	Complex types			
			Simple types			18

Conclusions: Metadata analyses and application

profile work, thoughts...to date...

Positive aspects

- Peel away at silos built via metadata development
- Intellectually engaging
- Think we are making a contribution, have to start somewhere...
- <u>App. Profiles</u> step preparing for machine capabilities; eScience /data synthesis

Challenges

- Time consuming
- Documentation inconsistent and lacking
- App. Profiles:
 Infrastructure not all there... (a lot is not in RDF)
 - Registered Dryad "purl"
 - Registries!!
- Proof of concept difficult

Metadata

- Data about data; information about information
- Structured information that supports functions (Greenberg, 2003, 2009)

Metadata functions

- Discovery/Retrieval
- Life-cycle
 Management
- Preservation
- Usage
 - Rights
 - Technical use
- Ratings/audience appropriateness
- Authentication
- Provenance tracking

For more information

- Metadata Research Center: <u>http://ils.unc.edu/~mrc</u>
 - Publications page
- Dublin Core Metadata Initiative/Science and Metadata: <u>http://purl.org/dc/science</u>.
- Dryad: <u>http://datadryad.org/</u>
- Dryad Wiki
 - <u>https://www.nescent.org/wg_digitaldata/Main_Page</u>
 - Includes links to publications, the application profile, and lists Dryad team members

Follow Dryad on Facebook and Twitter

